NORMAL PROCEDURES CHECKLIST

BEFORE-PREFLIGHT:

- 1) Weather, flight plan, charts, plates, airport information, etc.?
- 2) Fuel & weight issues: e.w.: 3,401 maximum takeoff weight: 5,200 maximum landing weight: 4,940 maximum zero-fuel weight: 4,400 (allows fuselage load up to 999) forward & aft baggage limits: 150 each maximum cabin load with full fuel: 737 inboard usable fuel: 34.3 + 34.3 = 68.6 gals. outboard usable fuel: 54.3 + 54.3 = 108.6 gals. total usable fuel capacity: 177.2 gals. Lycoming IO-540-C4B5, 91/96 octane minimum *See POH worksheet 6-13 and C. G. chart 6-17
- 3) Accelerate-Stop Distance CHECK, see POH Fig. 5-17
- 4) Headsets, flashlights, handheld, kneeboard, portable GPS, maps, charts, rosary etc. positioned
- 5) Airworthiness Certificate, Registration Certificate, latest Weight & Balance report, and POH on board?

PREFLIGHT:

- 1) Controls Release yoke if belted, controls free
- 2) Gear handle DOWN
- 3) Master switch ON
- 4) Gear lights 3 Green?
- 5) Alternator inoperative lights ON?
- 6) Pitot heat, Windshield de-ice If used: warm to touch & off

- 7) Exterior lights Check those required by flight conditions, night
- 8) Fuel selectors ON and Set to fullest tanks
- 9) Electric fuel pumps Check then OFF
- 10) Crossfeed Drained then OFF
- 11) Cowl flaps OPEN
- 12) Master switch OFF
- 13) Magneto switches Confirm OFF
- 14) Mixtures Idle cut-off
- 15) Emergency exit Confirm secure
- 16) Trim Set for takeoff

EXTERIOR INSPECTION:

- 1) Rear baggage door Secure & Locked
- 2) Antennas Secure
- 3) Crossfeed drain No drip after sumping
- 4) Right wing Remove any exterior gust locks; check surfaces, hinges and security. Frost?
- 5) Right tie-down Untied
- 6) Right fuel caps Note quantities (to compare with Shadin) & secure caps
- 7) Right fuel drains under nacelle Drain 3, (GATS jar?)
- 8) Right gear Chock removed
- 9) Right engine Oil level recorded, dipstick SECURE, ("snap" down)
- 10) Right engine Feel under oil cooler for leak

- 11) Right prop & spinner Check
- 12) Windshield Check
- 13) Nose baggage door Secure & locked
- 14) Nose gear Chock removed
- 15) Left engine Oil level recorded, dipstick SECURE, ("snap" down)
- 16) Left engine Feel under oil cooler for leak
- 17) Left prop & spinner Check
- 18) Left gear Chock removed
- 19) Left fuel caps Note quantities (to compare with Shadin) & secure caps
- 20) Left wing Remove any exterior gust locks; check surfaces, hinges and security. Frost?
- 21) Left fuel drains under nacelle Drain 3, (GATS jar?)
- 22) Pitot Cover removed & stowed
- 23) Empennage Check condition & freedom, remove any gust lock

ENTERING AIRCRAFT:

- Show passengers "hard" handles on fuselage & hard step advise that nothing else is sturdy – "no step and no touch" spots that are not "hard".
- 2) Advise passengers to not touch, lean on, or "slam" cabin door, pilot can operate it best from left seat

BEFORE STARTING ENGINES:

1) Cabin door - Lock AND secure auxiliary Latch

- 2) Door seal Inflated
- 3) Seats & belts & shoulder straps Positioned & locked
- 4) Passenger briefing as necessary "exits, sterile cockpit, etc."
- 5) Parking brake Set
- 6) Circuit breakers Checked & set
- 7) Confirm Crossfeed OFF Fuel pumps - OFF Fuel valves - ON Cowl Flaps - OPEN Mixtures - Idle Cut Off Avionics & Autopilot master - OFF Gear handle - DOWN
- 8) Master switch ON
- 9) Confirm Door ajar light OFF... Gear lights 3 Green
- 10) Alternators ON

STARTING COLD ENGINES:* (Hot/flooded starts, see POH 4-6, 4-11(b) and (c)) *(These procedures differ slightly from POH, presumably because of GAMI injectors?)

- 1) Rotating Beacon ON
- 2) Mixtures Full Rich
- 3) Props High RPM, low pitch
- 4) **LEFT ENGINE**:
 - A) Throttle Full open
 - B) Left electric fuel pump ON 5 SECONDS +/-
 - C) Throttle Closed to 1/4 Inch

- D) Left magnetos ON
- E) Clear Prop Confirm and announce
- F) Starter Engage Left
- G) Throttle Maintain 1,000 RPM during warm-up
- H) Oil Pressure Check (30 sec. or less for good indication)
- I) Vacuum Check left red button sucks IN
- J) Alternator Left inoperative light OFF

K) Gear handle - Snaps up to neutral if left hyd. pump OK (Right hydraulic pump can be checked after Left engine is shut down at the conclusion of flight.)

RIGHT ENGINE:

- A) Throttle Full open
- B) Right electric fuel pump ON 5 SECONDS +/-
- C) Throttle Closed to 1/4 Inch
- D) Right magnetos ON
- E) Starter Engage RIGHT
- F) Throttle Maintain 1,000 RPM during warm-up
- G) Oil Pressure Check (30 sec. or less for indication)
- H) Vacuum Check right red button sucks IN
- I) Alternator Right inoperative light OFF

PRE-TAXI and **TAXI**:

1) Lights - As needed. (Landing light off in taxi and when in position and hold; landing light ON when crossing a runway and on takeoff.)

- 2) Altimeters, D/G Set
- 3) Transponder Standby & SET (avoid 7500- hijack, 7600 lost comm., 7700 emergency)
- 4) Autopilot Confirm OFF
- 5) Radar Standby
- 6) Avionics Master ON
- 7) Shadin "ENTER/TEST" button, (on left) Press (Confirm "GOOd"; K-factor (pulse count) is set to "gallons"; confirm maximum usable fuel = 177)
- 8) Shadin "REM/USED" toggle (center) Move to "USED", (to right), to see fuel used since last fuel entry. Move to "REM", (to left), to see fuel remaining on board. Compare & confirm by visual or other method.
- 9) Confirm fuel "REM" or input correct setting of Shadin, (see Shadin procedures supplement, below, Page 12.)
- 10) ATIS/AWOS, etc. Listen & Copy
- 11) Obtain and copy taxi & departure clearances as required
- 12) Parking brakes OFF
- 13) Toe brakes CHECK when in motion
- 14) Flight instruments Responsive when moving ?
- 15) Heater Test run if required

BEFORE TAKEOFF & ENGINE RUN-UP:

- 1) Parking brakes SET
- 2) Fuel selectors Confirm tank selection & crossfeed OFF
- 3) Altimeters & D/G Confirm settings
- 4) Avionics Set for departure

- 5) Autopilot Confirm OFF
- 6) Trim Confirm set for takeoff
- 7) Flaps Visually confirm no flaps
- 8) Flight controls Free and correct (no gust locks?)
- 9) Prop/wing de-ice systems As required
- 10) Mixture Full rich if leaned in taxi
- 11) Props High RPM, low pitch
- 12) Throttles Advance to 1,500 RPM
- 13) Feathering check Max 500 RPM drop engine damage possible below 1,000 RPM in feather
- 14) Throttles Advance to 2,200 RPM Check prop governor by exercising props Max 300 RPM drop
- 15) Magneto check both engines @ 2,200 RPM: Maximum drop - 175 RPM Maximum difference - 50 RPM
- 16) At 2,200 RPM Re-confirm oil pressure, alternator function, and vacuum
- 17) Throttles Check idle ca. 550 to 600 RPM, then advance to 1,200
- 18) Transponder Verify correct squawk #, then ON
- 19) Time Copied
- 20) Electric fuel pumps ON

TAKEOFF & CLIMB:

- 1) Electric fuel pumps CONFIRM ON
- 2) Throttles Advance gradually to full forward & guard Page 7

- 3) Pass Vmc, 64 KIAS (red line), begin rotation @ 70 KIAS
- 4) Pass Vyse, 88 KIAS (blue line) A.S.A.P.
- 5) Obstacle clearance speed, Vx = 89 KIAS
- 6) Gear UP when positive ROC established
- 7) Normal climb at Vy, 103 KIAS
- 8) Electric fuel pumps OFF, at safe altitude, ONE AT A TIME
- 9) Cruise climb at 120 KIAS, props set to 2,500-2,575
- 10) Cowl flaps as required by OAT & CHT

CRUISE:

- Power Set and lean for desired efficiency, see POH, 5-32 (2,400/24, 100° F. EGT rich of peak is a best-power intermediate cruise setting, and 2,200/20, 100° F. rich of peak is a best power, long-range cruise setting. Best economy settings at peak EGT can cook Lycoming valves... hence the rich of peak settings seem wiser. Target lower power settings (below 65%), a CHT of less than 380° F. – 400° F., and oil temp 165° - 220°.)
- Power change sequences: INCREASE: Mixture - enrich; Prop – increase RPM; Throttle – advance DECREASE: Throttle – reduce; Prop – decrease RPM; Mixture - lean
- 3) Cowl flaps as required by OAT & CHT
- 4) Engine gauges Scan regularly

DESCENT:

- 1) ATIS/AWOS, etc. Listen & Copy & Set Altimeters to local
- 2) Mixtures Enrich with descent
- 3) Airspeed Not to exceed V_a, 131 KIAS in turbulence, and V_{ne}, 221 KIAS under any circumstance. Avoid shock cooling, (>50° F./min.)

BEFORE LANDING:

- 1) Safety belts; seats; cabin contents Secure
- 2) Exterior lights As required
- 3) Radar & Autopilot OFF
- 4) Heater OFF, fan ON to cool down
- 5) Fuel selectors On, fullest tanks
- 6) Crossfeed OFF
- 7) Landing gear Extend below 132 KIAS Confirm 3 green
- 9) Flaps Extend ¼ below 141 KIAS 1/2 below 123 KIAS if desired, full below 108 KIAS
- 10) Trim Reset
- 11) Mixture Full rich, or as field elevation requires
- 12) Electric fuel pumps ON
- 13) Props High RPM, low pitch
- 14) Landing gear Confirm 3 green... again
- 15) Pattern speeds Above 88 KIAS, (Vyse), 75 on short final
- 16) Cowl flaps As required by OAT & CHT

GO-AROUND:

- 1) Props High RPM, low pitch
- 2) Throttles Full forward

- 3) Flaps Retract gradually, in steps
- 4) Gear Retract when positive ROC established
- 5) Cowl flaps As required by OAT & CHT
- 6) Airspeed Accelerate to climb at Vy, 103 KIAS to TPA
- 7) Pattern speeds Above 88 KIAS, (Vyse), 75 on short final
- 8) Landing gear Extend below 132 KIAS Confirm 3 green
- 9) Flaps Extend ¼ below 141 KIAS ½ below 123 KIAS if desired, full below 108 KIAS
- 10) Trim Reset
- 11) Mixture Full rich, or as field elevation requires
- 12) Electric fuel pumps ON
- 13) Props High RPM, low pitch
- 14) Landing gear Confirm 3 green again

AFTER LANDING & CLEAR OF RUNWAY:

- 1) Flaps Retract (**AVOID** gear handle!!! do not rely on squat valve)
- 2) Electric fuel pumps OFF
- 3) De-icing OFF
- 4) Transponder Standby
- 5) Heater OFF, continue FAN until cool
- 6) Cowl flaps Open

- 7) Exterior lights As required
- 8) Trim Re-Set for next takeoff
- 9) Door seal Deflate

SHUTDOWN:

- 1) Avionics & Autopilot master OFF
- 2) Exterior lights All OFF, except rotating beacon
- 3) Heater & Fan OFF
- 4) Magneto "P" lead & switch check, if desired.
- 5) Left engine Mixture Idle cut off
- 6) Gear handle Select "Down" *after left engine stops turning*. Snaps to neutral if right hydraulic pump is OK
- 7) Right engine Mixture Idle cut off
- 8) Magnetos OFF, both engines
- 9) Vacuum red buttons Check both popped out
- 10) Alternator inop. lights Check on
- 11) Shadin fuel readings Checked and noted
- 11) Master switch OFF
- 12) Time & Hobbs Copied
- 13) Cowl flaps Closed

SHADIN DIGITAL FUEL MANAGEMENT SYSTEM

NORMAL PROCEDURES CHECKLIST SUPPLEMENT

WARNING: This system measures FLOW, **not** QUANTITY. Quantity must be determined and entered manually by pilot.

A) Pressing the "ENTER/TEST" button (button on left) will produce, in sequence:

- 1 a "GOOd" if the display is OK
- 2 the K-factor (pulse count units): per "gal." is desired
- 3 the maximum usable fuel: 177 (full) is expected
- 4 software & revision version #
- 5 distance to a waypoint or destination (to check integrity of data interface)
- B) To reset quantity after fuel is added:

Method (1): "Ramping" (for partial *or* "fill-up" additions)

"REM/USED" toggle (in center) - move to "REM", (to left), to see last fuel remaining on board figure – AND continue to HOLD toggle in "REM" position as you simultaneously... Press AND HOLD "ENTER/TEST" button to **increase** quantity... RELEASE REM/USED toggle and ENTER/TEST button when desired quantity is reached.

To **decrease** an accidental excessive fuel entry, move "REM/USED" toggle to "USED", (to right), AND continue to HOLD toggle in "USED" position as you simultaneously... press and hold ENTER/TEST button. Release toggle and button when desired quantity is reached.

Method (2): "FULL/ADD" toggle switch (for "fill-up" additions)

Shadin "FULL/ADD" toggle (on right) - move to "FULL FUEL", (to left), and HOLD as you press Shadin "ENTER/TEST" button.

Verify "177" is displayed by moving "REM/USED" toggle to "REM", (to left).

The *LEFT WINDOW* displays total fuel flow of both engines. (Separate engine fuel flows can be displayed by moving "REM/USED" and "FULL/ADD" toggles toward each other... "squeeze them").

The *RIGHT WINDOW* display is selected by the "REM/USED" toggle switch and the ROTARY KNOB.

toggle	"USED"	displays fuel used
toggle	"REM"	displays fuel remaining
knob	"Endurance"	hours and minutes endurance at present burn
knob	"NM/gal"	mpg
knob	"Gal to Dest"	fuel required to reach the active waypoint
		FLASHING display = insufficient, and the gallons
		shortage will display as a negative number
knob	"Gal Reserve"	fuel remaining upon reaching the active waypoint
		FLASHING display = less than 45 min. reserve on
		reaching the active waypoint

N700KQ "V" speeds, in Knots, IAS

- $V_A = 131 = Design Maneuvering Speed the maximum speed at which the application of full available aerodynamic control will not overstress the aircraft.$
- $V_{FE} = 108^* = Maximum Flap Extended Speed the highest speed permissible with flaps in a prescribed extended position*.$

* full = 108; half = 123; quarter = 141

- $V_{LE} = 132$ = Maximum Landing Gear Extended Speed the maximum speed at which an aircraft can be safely flown with the landing gear extended.
- $V_{LO} = 132$ = Maximum Landing Gear Operating Speed the maximum speed at which the landing gear can be safely extended or retracted.
- $V_{MCA} = 64$ = Air Minimum Control Speed the maximum speed at which the airplane is directionally controllable as defined by FAR certification standards,

particularly §23.149. Manufacturer selects the maximum certification weight, but V_{MCA} for piston aircraft may not exceed 1.2 X V_{S1} at maximum takeoff weight. Manufacturer selects control standard of "zero yaw" OR with an angle of bank not to exceed 5°. Certification conditions further include critical engine (left for N700KQ) inoperative, prop windmilling; not more than 5° bank into the right engine; takeoff power on right engine; landing gear up; flaps in takeoff position (up for N700KQ); most rearward CG.

[Simulated Single Engine power setting: 2200 RPM / 11" MP]

- V_{NE} = 221 = Never Exceed Speed.
- V_{NO} = 175 = Maximum Structural Cruising Speed. ("Normal Operating")
- V_s = 61 = Stalling Speed, or the minimum steady flight speed at which the airplane is controllable.
- $V_{S1} = 61$ = Stalling Speed or minimum steady flight speed in a specific configuration, for N700KQ, gear and flaps up.
- $V_{so} = 55$ = Stalling Speed, or the minimum steady flight speed at which the airplane is controllable in the landing configuration, gear and flaps down.
- $V_{SSE} = 80$ = Intentional One Engine Inoperative Speed a minimum speed selected by the manufacturer for intentionally rendering one engine inoperative for pilot training. (V_{MCA} demonstrations to be conducted above 5,000 feet... engine at 2200/11" MP)
- $V_x = 89$ = Best Angle-of-Climb Speed.
- $V_{XSE} = 83$ = Best Single Engine Angle-of-Climb Speed.
- $V_{Y} = 103 = Best Rate-of-Climb Speed.$
- $V_{\text{YSE}} = 88$ = Best Single Engine Rate-of-Climb Speed. C:\aztec\PA23VS

N700KQ - WEIGHT ISSUES

Empty Weight: 3,401 lbs. Maximum Zero Fuel Weight: 4,400 lbs. Maximum Landing Weight: 4,940 lbs. Maximum Gross Weight: 5,200 lbs.

A 4,400 lbs. "Zero Fuel Weight" limitation was imposed in 1983 (AD 83-22-01 R1) to discourage excessive fuselage loading (fuel loading in wings counteracts the wing lift that bends the wing upwards, but fuselage loads can amplify bending loads on wing roots by the downward force at the roots added to (not counteracting) the wing lift upward force).

The most recent (12/17/07) weight and balance review showed the "Empty Weight" to be 3,401 lbs., allowing 999 lbs. to be loaded in the fuselage before any fuel is loaded.

With a maximum "Gross Weight" limit of 5,200 lbs., and 999 lbs. loaded in the fuselage, 800 pounds of fuel (133 gallons) could be loaded... not the 177 gallons maximum the tanks can hold. Essentially, the inboard tanks could be filled, and the outboards filled about 60%. (N.B. the "outboards" in each wing of N700KQ are 2 interconnected bladders... a 34.3 gallon one and a 20 gallon one... comprising a 54.3 gallon usable capacity in each wing. The inboards are individual 34.3 usable gallon bladders.)

The aircraft was actually weighed 1/2/07 **WITH FULL FUEL**, and the result was 4,460 lbs. Subtracting this from the maximum "Gross Weight" would leave 740 lbs. for passengers and luggage, with full fuel on board.

If we keep the fuselage loading below 740 lbs., we will not exceed the "Zero Fuel Weight" limit or the maximum "Gross Weight" limit.

Between 740 lbs. and 999 lbs. in fuselage load, we begin to need an offsetting reduction in fuel loading.

The "Maximum Landing Weight" limit is 4,940 lbs., indicating that 260 lbs. or 43 gallons of fuel needs to be burned off after a Maximum Weight takeoff before landing. That would take about 1:20 to 1:40 of flight, depending on power settings. To be immediately under the "Maximum Landing Weight" limit and under the "Zero Fuel Weight" limit AND have full fuel, would require that the fuselage load be limited to about 480 lbs.

Previous owners suggested loading the rear baggage area (up to 150 lbs.) before placing baggage in the nose compartment (up to 150 lbs.) to avoid a nose-heavy feeling.

A hypothetical light 3-passenger (470 lb.) load with 60 lbs. baggage in the rear compartment and full fuel will exceed the Maximum Landing Weight on takeoff, and will push the edge of the envelope. Three hours of fuel burn will improve this dramatically. This is not a "full seats, full fuel, full baggage" aircraft.

C:\aztec\PA23WGTS.SXW

EMERGENCY PROCEDURES

CRITICAL SPEEDS:

SECURING ENGINE & FEATHERING PROCEDURE:

Throttle	- CLOSE
Prop	- FEATHER promptly when greater than 1,000 RPM
Mixture	- Idle Cut-Off
Cowl Flaps	- Close
Magneto	- OFF
Electric fuel pump	- OFF
Fuel selector	- OFF
Alternator	- OFF
Prop Sync.	- OFF
Electrical load	- Reduce
Crossfeed	- Consider use

ENGINE FAILURE DURING TAKEOFF BELOW V_{MCA} (64 KIAS):

Throttles	- CLOSE IMMEDIATELY
Brakes	- Stop straight ahead, if runway remains

If insufficient runway remains:

Throttles	- CLOSE IMMEDIATELY
Brakes	- SLOW as much as possible
Mixtures	- Idle Cut-Off
Master	- OFF
Fuel selectors	- OFF
Magnetos	- OFF
Maintain directional	control and avoid obstacles if possible.

ENGINE FAILURE DURING TAKEOFF BETWEEN V_{MCA} and V_{XSE} , (64 to 83 KIAS):

DECISION: ABORT or CONTINUE

If *ABORT*, follow "ENGINE FAILURE DURING TAKEOFF BELOW V_{MCA} PROCEDURES", above.

(WARNING! *Many combinations of weight, configuration, and ambient conditions can make single engine climb marginal or impossible. Also see comments at* SINGLE ENGINE GO-AROUND, *below*)

If "CONTINUE", ACCELERATE to 83 KIAS in ground effect, and follow "ENGINE FAILURE 83 KIAS and ABOVE", next...

ENGINE FAILURE DURING TAKEOFF, 83 KIAS, (V_{XSE}), and ABOVE:

Airspeed	 - 83 KIAS MINIMUM, 88 KIAS (Vyse) when clear of obstacles
Direction	- Maintain Control
Power	- Maximum
Gear	- Retract
Flaps	- Confirm UP
Prop (inop. engine)	- FEATHER
Bank	 5° toward good engine
Cowl Flaps (inop. engine)	- CLOSE
Cowl Flaps (good engine)-	- CLOSE, as much as engine temps permit
Climb	- straight
Inop. Engine	 see SECURE ENGINE & FEATHERING, above
Landing	 ASAP, (See SINGLE ENGINE LANDING)

ENGINE FAILURE DURING CLIMB:

Airspeed	- Maintain 88 KIAS
Direction	- Maintain Control
Inop. Engine Landing	 see SECURE ENGINE & FEATHERING, above ASAP, (See SINGLE ENGINE LANDING)

ENGINE FAILURE DURING FLIGHT, BELOW V_{MCA} (64 KIAS):

Rudder	 Apply toward operative engine
Throttles, (both)	- Retard
Pitch	 Lower nose, accelerate above 64 KIAS
Power	 Increase operative engine as required
Restart	- Attempt if altitude permits, & see ENGINE
	FAILURE DURING FLIGHT, ABOVE V _{MCA} (64 KIAS),
	next

ENGINE FAILURE DURING FLIGHT, ABOVE V_{MCA} (64 KIAS):

- Identify
 Power as needed
- ON, Inop. Engine
- Select sufficient tank
- Check
- Confirm ON

If no restart, - see SECURE ENGINE & FEATHERING, above

Operative engine, POWER, MIXTURE, FUEL SELECTION, FUEL PUMP, COWL FLAPS... AS REQUIRED

Bank	- 5º toward good engine
Electrical Load	- Minimum required
Landing	- ASAP, & see SINGLE ENGINE LANDING, next

SINGLE ENGINE LANDING:

Inop. Engine Seat belts / harness Heater Electric fuel pump Mixture Prop Cowl flaps Fuel selection Crossfeed Airspeed	 see SECURE ENGINE & FEATHERING, above Secure Off if it has been used, "Fan" ON to cool ON, operative engine RICH, operative engine High RPM, (low pitch), operative engine As required, operative engine Fullest tank, "ON", operative engine Off Maintain 98 KIAS until landing assured
Airspeed	- Maintain 98 KIAS until landing assured

Altitude
Gear
Flaps
Direction

- Higher than usual until landing assured

- Down when landing assured, (on final)

- Down when landing assured, (on final)

- Maintain Control, expect yaw toward

operative engine as power is reduced

SINGLE ENGINE GO-AROUND, (Inoperative engine must be secure & feathered): AVOID IF POSSIBLE !

Airspeed- Hold 88 KIAS, (VYSE)Power- MaximumFlaps- RetractGear- RetractCowl flaps- As required

UNFEATHERING & AIR START:

Fuel selector	- ON
Throttle	- Open ½"
Mixture	- Rich
Electric fuel pump	- Prime, then OFF
Prop	- Forward
Magnetos	- ON
Starter	 Engage until prop unfeathers
Prop	- Select reduced RPM as it passes 1,000
Throttle, while warming	- Reduced power, 2,000 RPM max
Cowl flaps	- Closed
Oil Pressure	- Check
Alternator	- On

OVERSPEEDING PROPELLERS:

Throttle	- Retard
Airspeed	- Reduce
Throttle	- Add slowly after RPM is controlled
Airspeed	- Stay below overspeed airspeed
Descend	- At 2,200 RPM
Land	- At 2,400 RPM

Note: Prop will not feather while overspeeding. Do not select feather or shut down engine while overspeeding. $$Page \ 19$$

ENGINE ROUGHNESS:

Electric fuel pumps	- ON
Engine instruments	- Scan for cause
Mixture	 Adjust as required
Alternate Air	- OPEN
Cowl flaps	- Adjust for proper CHT
Fuel	- Switch tanks
Magnetos	- Check

ENGINE OVERHEAT:

Cowl Flaps	- OPEN
Mixture	- Richen
Power	- Reduce
Airspeed	- Increase if altitude permits

LOSS OF OIL PRESSURE:

Secure engine - see SECURE ENGINE & FEATHERING, a	above
---	-------

ROUGH AIR OPERATION:

SLOW to V_A, 131 KIAS, or slightly less Avoid abrupt maneuvers Seat belts / Harness - Tighten

EMERGENCY GEAR EXTENSION, MANUAL:

132 KIAS = V_{LE}

Gear selector	 DOWN position
Hand pump	 Extend handle & pump

Continue until "3 green" and gear selector returns to neutral

EMERGENCY GEAR EXTENSION, CO₂:

132 KIAS = V_{LE}

Gear selector	- DOWN position
Ring cover	- RAISE
Ring	- PULL

After CO₂ extension: Do NOT attempt to raise gear hydraulically.

GEAR UP LANDING:

Normal DESCENT & BEFORE LANDING checklist – Complete, except gear Gear selector - UP Make normal approach with power Close throttles on short final before touchdown Master and Magneto switches - OFF* Fuel valves - OFF Touch down at minimum speed (*If time permits, use starters to "bump" props to horizontal)

EMERGENCY MANUAL FLAP EXTENSION:

V_{fe} - $\frac{1}{4}$ =	141 KIAS
1/2 =	123 KIAS
Full =	108 KIAS

Flap	selector	- De	esire	ed	DO	WN	position
	1	_					0

Hand pump - Extend handle & pump

ENGINE FIRE ON GROUND:

Electric fuel pump	- OFF
Fuel selector	- OFF
Brakes	- As needed
Throttle	- Open
Radio	- Call for help
Mixture (if fire continues)	- Idle Cut-Off

Live engine - Off and secure Evacuate aircraft External fire extinguisher - Use it

ENGINE FIRE IN FLIGHT:

Mixture	- Idle Cut-Off
Electric fuel pump	- OFF
Fuel selector	- OFF
Propeller	- Feather
Good engine power	- Increase
Drag	- Reduce, (flaps, gear, cowl)
Alternator	- Off
Electrical load	- Reduce
Magnetos	- Off
If fire continues	- Dive for speed to blow out fire
Single engine operation	- To suitable airport
Land	- ASAP

- ASAP

CABIN FIRE:

Vents	- Closed
Heater	- Off
Fire extinguisher	- Use carefully
When fire extinguished	- Ventilate cabin

ELECTRICAL FIRE:

Flashlight	- In hand if dark
Master switch	- OFF
Circuit breakers	- Identify open breakers (shorted), pull the rest
Electrical switches	- All OFF
Avionics	- All OFF
Vents	- Closed
Heater	- Off
Fire extinguisher	- Use
When fire extinguished	- Ventilate cabin
Master switch	- ON

Faulty circuit breakers	- Leave OFF
Other circuit breakers	- ON, one at a time, minimum for safe flight
Avionics & switches	- ON, one at a time, minimum for safe flight

EMERGENCY DESCENT:

- To idle, slowly
- Forward, low pitch, high RPM
- 175 (V _{no}), 131 (V _a) in rough air
- Closed to lessen shock cooling

GOING INTO CROSSFEED: Use only to extend range in single engine operation.

Fuel selector, dead engine side Electric fuel pump, dead engine Crossfeed valve Electric fuel pump, live engine

Fuel selector, live engine

COMING OUT OF CROSSFEED:

Fuel selector, live engine side Electric fuel pump, live engine Electric fuel pump, dead engine Crossfeed valve Fuel selector, dead engine side Electric fuel pump, live engine

- ON, (inboard or outboard)
- ON
- ON
- OFF (to prevent heating of trapped fuel & vapor lock when coming out of crossfeed)
- OFF
- ON, (inboard or outboard)
- ON
- OFF
- OFF
- OFF
- May now be cut off... use as required

ONE ALTERNATOR INOP LIGHT ON:

Reduce electrical load to minimum

- Master switch, Inoperative side
- Circuit breakers
- Master switch, both sides
- If Inop. light goes out
- If Inop. light stays on

- OFF temporarily
- Reset tripped ones
- ON
- Reinstate electrical load
- Inop. side of Master switch OFF and continue with reduced load

BOTH ALTERNATOR INOP LIGHTS ON:

Repeat "One Alternator Inop Light" procedures If both alternators do not restart (Inop lights stay on)... Master switch - ON (run on battery only) Alternator circuit breakers - OFF Reduce electrical load as much as possible Terminate flight & land - ASAP

DOOR OPEN IN FLIGHT:

Airspeed- Reduce to minimize buffetingTerminate flight & land- ASAP

SPIN RECOVERY*:

Throttles	- Retard both to idle
Rudder	- Full opposite to spin until rotation stops
Control wheel, stabilator	- Neutral to full forward if necessary
Ailerons	- Neutral
Recover from dive when	spin stops.

* Spin demonstrations are not required in the certification of aircraft of this weight, and Piper claims none were conducted, so the suggested recovery technique may not work. Avoid spins.

AIRFRAME VIBRATION:

Airspeed	 Reduce to see if vibration stops
Controls	 Handle smoothly & gently
Terminate flight & land	- ASAP investigate cause of vibration

SEVERE ICING: (see AD 99-14-01)

If one or more of the following visual cues exists, immediately request priority handling from ATC to facilitate a route or altitude change; AND disengage autopilot, while holding the control wheel firmly: Unusually extensive ice accumulation on the airframe and windshield in areas not normally observed to collect ice...

Accumulation of ice on the upper surface of the wing, aft of the protected leading edge...

Accumulation of ice on the engine nacelles and propeller spinners farther aft than normally observed...

Do not extend flaps when holding in icing conditions.

If flaps are extended, do not retract them until airframe is clear of ice.